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Chaos in small-world networks
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A nonlinear small-world network model has been presented to investigate the effect of nonlinear interaction
and time delay on the dynamic properties of small-world networks. Both numerical simulations and analytical
analysis for networks with time delay and nonlinear interaction show chaotic features in the system response
when nonlinear interaction is strong enough or the length scale is large enough. In addition, the small-world
system may behave very differently on different scales. Time-delay parameter also has a very strong effect on
properties such as the critical length and response time of small-world networks.
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I. INTRODUCTION

Since the pioneer work of Watts and Strogatz@1# on
small-world networks, a lot of interesting research on
theory and application of small-world networks@2–7# have
been initiated. The properties of complicated networks s
as internet servers, power grids, forest fires, and disord
porous media are mainly determined by the way of conn
tions between the vertices or occupied sites. One limit
case is the regular network with a high degree of local cl
tering and a large average distance, while the other limit
case is the random network with negligible local cluster
and a small average distance. The small-world network
special class of networks with a high degree of local clus
ing as well as a small average distance. Such small-w
phenomenon can be obtained by adding randomly onl
small fraction of the long-range connections, and some c
mon networks such as power grids, financial networks
neural networks behave similar to small-world networ
@2–9#.

The dynamic features such as spreading and respons
an influence over a network have also been investigate
recent studies@2,3# by using shortest paths in system wi
sparse long-range connections in the frame work of sm
world models. A simple time-stepping rule has been use
simulate the spreading of the influence such as a forest
an infectious disease, or a particle in percolating media.
influence propagates from the infected site to all uninfec
sites connected to it via a link at each time step, whenev
long-range connection or shortcut is met, the influence
newly activated at the other end of the shortcut so as
simulate long-range sparkling effect such as the infect
~e.g., a person with influenza! suddenly travels to a new
place, or an infected portable computer starts to connect
network at a new site. These phenomena have been suc
fully studied by the Newman and Watts model@2# and
Moukarzel @3#. Their models are linear model in the sen
that the governing equation is linear and the response is
mediate as there is no time delay in their models.

However, in reality, a spark or an infection cannot star
new fire spot or new infection immediately, it usually tak

*Email address: xinshe@amsta.leeds.ac.uk
1063-651X/2001/63~4!/046206~4!/$20.00 63 0462
e

h
ed
c-
g
-
g

a
r-
ld
a
-

d

of
in

ll-
to
e,
e
d
a

is
to
te

a
ss-

-

a

some timeD, called ignition time or waiting time, to start
new fire or infection. In addition, a fraction of infected site
shall recover after a further time ofT to normality. Thus the
existing models are no longer be able to predict the respo
in the networks or systems with a time delay. Furthermo
the nonlinear effect such as the competition factor as in
population dynamics, congestion features such as the tr
jam in internet communication and road networks, and
frictional or viscous effect in the interaction of vertices, sh
be modelled in order to simulate more realistic networ
When considering these nonlinear effects, the result
small-world network model is generally no longer linea
Therefore, a nonlinear model is yet to be formulated.

The main aim of this paper is to present a more gene
nonlinear model for the small-world networks by extendi
the existing Newman-Watts@2# and Moukarzel@3# models to
investigate the effects of time delay, site recovery, and
nonlinear interaction due to competition and congestion. T
new model will generally lead to a nonlinear difference d
ferential equation, whose solution is usually very difficult
obtain if it is not impossible. Thus the numerical simulatio
becomes essential@1#. However, we will take the analytica
analysis as far as possible and compare with the results f
numerical simulations. The characteristic chaos of the n
work dynamics is then studied by reducing the govern
equation into a logistic equation. The control of the chaos
also investigated by introducing the negative feedback wit
time delay to the small-world networks.

II. NONLINEAR MODEL FOR SMALL-WORLD
NETWORKS

To investigate the nonlinear effect of the time delay
the properties of a small-world network, we now conside
randomly connected network on ad-dimensional lattice@1,2#
~with d51,2, . . . ), andoverlapping on the network are
number of long-range shortcuts randomly connecting so
vertices, and the fraction of the long-range shortcuts or pr
ability p is relative small (p!1). Now assuming an influ-
ence or a pollutant particle spreads with a constant velo
u51 in all directions and a newly infected site in the oth
end of a shortcut will start but with a time delayD. Follow-
ing the method developed by Newman and Watts@2# and
Moukarzel@3#, the total influenced volumeV(t) comes from
©2001 The American Physical Society06-1
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three contributions: one is the influenced volume w
Gd*0

t zd21dz where t is time andGd is a shape factor, the
other contribution isGd*0

t @2pV(t2z2D)#zd21dz for a hy-
persphere started at timez. These two components hav
been used earlier@2,3# although without the time delay pa
rameter. Now we add the third component due to the non
ear interactions such as friction, slow down due to the c
gestion as in the case of internet network and traffic jam
lack of other resource such as insufficient oxygen for the
spark to start a new fire. By assuming this nonlinear effec
2Gd*0

t @mV2(t2z2D)#zd21dz wherem!1 is a measure o
nonlinear interaction, a continuum approach to the netw
leads to the following delay equation

V~ t !5GdE
0

t

zd21@11j2dV~ t2z2D!2mV2~ t2z2D!#dz,

~2.1!

whered51,2, . . . , andGd is shape factor of a hypersphe
in d dimensions. TheNewman-Wattslength scale@2# can be
conveniently defined as

j5
1

~2pkd!1/d
, ~2.2!

wherek5const is some fixed range. Rescalingt by

t5t@Gdj2d~d21!! #1/d, d5D@Gdj2d~d21!! #1/d

~2.3!

and rewriting Eq.~2.1! in the rescaled form

V~ t !5
jd

~d21!! E0

t

~t2z!d21@11j2dV~z2d!

2mV2~z2d!#dz. ~2.4!

After differentiating the equationd times, we have

ddV

dtd
5jd1V~t2d!2mjdV2~t2d!, ~2.5!

which is a nonlinear delay differential equation, whose e
plicit solutions is not always possible. It is worth pointin
out that the present model can degenerate into the prev
simplified mode by Newman and Watts@2# and Moukarzel
@3# when m50 and d50, which produces exponentia
growth without limit. However, in reality, the nonlinear in
teraction due to competition exists as in the case of pop
tion dynamics where each individual compete for foo
Thus,m is generally nonzero, and this infected volumeV is
the results of competitive balance between growth term
nonlinear interaction terms. Similar to the population dyna
ics, the system with all initial conditions eventually settl
into one of three different types of behavior: fixed state,
riodic, and chaotic, depending on the parameters ofm andj.
In addition, the time delay (d) can also have strong effect o
the dynamic properties of the small-world networks.
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III. CHAOS IN SMALL-WORLD NETWORKS

From the theory of dynamical systems, it is expected t
the dynamic features can be shown more clearly by using
representation in Poincare plane@10#, which usually trans-
forms a nonlinear differential equation into a nonlinear ite
ated map or logistic equation. Now we write Eq.~2.5! in a
difference form and takedt5d to get a logistic equation. In
order to focus on the main characteristics of the dynam
for simplicity, we can taked51 in one dimension (d51),
and we then have

Vn115j12Vn2mjVn
2 , ~3.1!

where Vn115V(t) and Vn5V(t21). By changing vari-
ables

vn115
mj

~212Amj!
~Vn111A!,

~3.2!

vn5
mj

~212Amj!
~Vn1A!, A5

A114mj221

2mj
,

we can rewrite Eq.~3.1! as

vn115lvn~12vn!, l5~A114mj211!, ~3.3!

which is a standard form of the well-known logistic equati
@10#. This is a well-studied logistic equation and the para
eter range ofl for period doubling and chaos is well known
Thus, we can express the length scalej in terms ofl as

j25
~l21!221

4m
. ~3.4!

The system becomes chaotic asl is bigger than l*
'3.5699 but usually below 4.0, so the chaos begins at

j* 5A1.401

m
. ~3.5!

For l less thanl0'3.0, the system approach to a fixe
point, that is,

j05A0.75

m
. ~3.6!

For a fixedm, whenj0,j,j* , thenl,l* , the system is
in a period doubling cascade. Whenj.j* , the system be-
comes chaotic. Clearly, asm→0, j* →`. The system be-
havior depends on the length scale of small-world networ
The system may look chaotic on a large scale greater t
the critical length scalej* and the same system may be we
regular on the even smaller scale. So the system beh
differently on different scales.

On the other hand, for a fixed length scalej, we can
define a critical value ofm* whenl5l*

m* 5
1.401

j2
. ~3.7!
6-2
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For weak competition or nonlinear interactionm,m* , then
l,l* , so that the system falls into the period doubli
cascade. For the case of strong competitionm.m* , l
.l* , the system becomes chaotic. This clearly shows
for a given size of networks, too much strong competition
nonlinear interaction can make the system chaotic. This
have important implications in social sciences and finan
networks. Weak competition can provide the markets var
while too much competition could cause chaos if it is n
properly controlled.

To check the analytical results, we have also simula
the scenario by using the numeric method@1,2# for a network
sizeN5500,000,p50.002, andk52 on a one-dimensiona
lattice. Different values of the nonlinear interaction coef
cient m are used and the related critical lengthj* when the
system of small-world networks becomes chaotic. Figur
showsj* for different values ofm where all values are non
dimensional. The solid curve is the analytical results~3.5!
and the points~marked with open circle! are numerical simu-
lations. The good agreement verifies the analysis. Howe
as the typical length increases, the difference between t
two curves becomes larger because the governing equati
mainly for infinite size network. So the difference is due
the finite size of the network used in the simulations.

IV. NEGATIVE FEEDBACK AND CHAOS CONTROL
OF SMALL-WORLD NETWORKS

The occurrence of the chaos in small-world networks
due to the nonlinear interaction term with a time delay. T
chaotic feature can be controlled by adding a negative fe
back term@11,12#. In reality, the influence such as a signal
an influence~e.g., influenza! only last a certain period o
time T, then some of the influenced sites recover to norm
ity. From the derivation of small-world model equation~2.1!,
we see that this adds an extra termbV(t2D2T), which
means that a fraction (b) of the infected sites at a muc
earlier time (t2D2T) shall recover att. So that we have the
modified form of Eq.~2.5! as

FIG. 1. Critical length versus the nonlinear interaction coe
cient m for a network sizeN5500 000 andp50.002. All the vari-
ables are dimensionless. Numerical results~marked with open
circles! agree well with analytical express~solid!.
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ddV

dtd
5jd1V~t2d!2mjdV2~t2d!2bjdV~t2d2t0!,

~4.1!

wheret05T@Gdj2d(d21)!#1/d. For d51, we can taket0
5 j d ( j 51,2, . . . ) without losing its physical importance
By using transform~3.2!, we have a modified logistic equa
tion

vn115lvn~12vn!1a~vn2vn2 j !, j 51,2, . . . ,
~4.2!

with

l5~A114mj211!, a5bj, ~4.3!

which is in agreement with the Escalona and Parmana
form @12# of the OGY algorithm@11# in the chaos control
strategy. We can also write Eq.~4.2! as

vn115Lvn~12vn!2avn2 j , j 51,2, . . . ~4.4!

with

L5@A~12bj!214mj211#, a5bj. ~4.5!

This last form ~4.4! emphases the importance of the tim
delay and the effect of negative feedback in controlling
chaos.

For a fixed value ofL53.8, we find a critical value of
a* 50.27 for j 51 anda* 50.86 for j 52 to just control the
chaos so that the system settles to a fixed point. For the
of a.a* , the feedback is so strong that the chaos is s
stantially controlled, and the system leads to a fixed s
very quickly, and the numerical simulation shows that all t
estimated Lyapunov exponent is nonpositive orLl

'(1/N) (n51
N log2uL22Lvnu<0. For a,a* , the feedback

is not strong enough and the chaos is not substantially s
pressed. The chaos-measuring Lyapunov exponent estim

FIG. 2. Comparison of chaos and chaos control due to a d
feedback. All variables and parameters are dimensionless. The
ted points are for the chaotic response when there is no feed
(L53.8, a50), while the solid curve corresponds to the just co
trol of the chaos by a negative feedback (L53.8, a50.27).
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from the numerical simulations is usually non-negativ
which usually means that system is chaotic for weak fe
back. Figure 2 shows that the effect of recovery of the
fected site or the delay feedback on the system behavior~for
N51000). The dotted points are for the chaotic respo
when there is no feedback (L53.8, a50), while the solid
curve corresponds to the just control of the chaos by a ne
tive feedback (L53.8, a50.27). This clearly indicates tha
the proper feedback due to healthy recovery and time d
can control the chaotic response to a stable state.

V. CONCLUSION

A nonlinear small-world network model has been p
sented here to characterize the effect of nonlinear inte
tions, time delay, and recovery on small-world networ
Numerical simulations and analytical analysis for netwo
with a time delay and nonlinear interactions show that
system response of the small-world networks may beco
chaotic on the scale greater than the critical length scalej* ,
and at the same time the system may still behave regu
et

,
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on a smaller scale. So the small-world system behaves
ferently on different scales. The time delay parameterd has a
very strong effect on properties such as the critical len
and response time of the networks.

On the other hand, in order to control the possible chao
behavior of small-world networks, a proper feedback
healthy recovery of the infected sites is needed to stable
system response. For a negative delay feedback, nume
simulations suggest that a linear recovery rateb or linear
feedback can properly control the chaos if the feedback
strong enough. This may have important applications in
management and control of the dynamic behavior of
small-world networks such as the financial and business
works and world wide webs. This shall be the motivation
some further studies of the dynamics of small-world n
works.
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